Identification and utilization of two important transporters: SgvT1 and SgvT2, for griseoviridin and viridogrisein biosynthesis in Streptomyces griseoviridis
نویسندگان
چکیده
BACKGROUND Griseoviridin (GV) and viridogrisein (VG, also referred as etamycin), both biosynthesized by a distinct 105 kb biosynthetic gene cluster (BGC) in Streptomyces griseoviridis NRRL 2427, are a pair of synergistic streptogramin antibiotics and very important in treating infections of many multi-drug resistant microorganisms. Three transporter genes, sgvT1-T3 have been discovered within the 105 kb GV/VG BGC, but the function of these efflux transporters have not been identified. RESULTS In the present study, we have identified the different roles of these three transporters, SgvT1, SgvT2 and SgvT3. SgvT1 is a major facilitator superfamily (MFS) transporter whereas SgvT2 appears to serve as the sole ATP-binding cassette (ABC) transporter within the GV/VG BGC. Both proteins are necessary for efficient GV/VG biosynthesis although SgvT1 plays an especially critical role by averting undesired intracellular GV/VG accumulation during biosynthesis. SgvT3 is an alternative MFS-based transporter that appears to serve as a compensatory transporter in GV/VG biosynthesis. We also have identified the γ-butyrolactone (GBL) signaling pathway as a central regulator of sgvT1-T3 expression. Above all, overexpression of sgvT1 and sgvT2 enhances transmembrane transport leading to steady production of GV/VG in titers ≈ 3-fold greater than seen for the wild-type producer and without any notable disturbances to GV/VG biosynthetic gene expression or antibiotic control. CONCLUSIONS Our results shows that SgvT1-T2 are essential and useful in GV/VG biosynthesis and our effort highlight a new and effective strategy by which to better exploit streptogramin-based natural products of which GV and VG are prime examples with clinical potential.
منابع مشابه
Controlled biosynthesis of neoviridogriseins, new homologues of viridogrisein. I. Taxonomy and fermentation.
Neoviridogriseins, new homologues of viridogrisein, were produced with viridogrisein and griseoviridin by Streptomyces sp. P8648 which was identified as a strain of Streptomyces griseoviridus.
متن کاملBiosynthesis of gold nanoparticles using streptomyces fulvissimus isolate
Objective(s): In recent years, the biosynthesis of gold nanoparticles has been the focus of interest because of their emerging application in a number of areas such as biomedicine. In the present study we report the extracellular biosynthesis of gold nanoparticles (AuNPs) by using a positive bacterium named Streptomyces fulvissimus isolate U from rice fields of Guilan Province, Iran.Materials a...
متن کاملProduction of gold nanoparticles by Streptomyces djakartensis isolate B-5
Objective(s): Biosynthesis of gold nanoparticles (NGPs) is environmentally safer than chemical and physical procedures. This method requires no use of toxic solvents and synthesis of dangerous products and is environmentally safe. In this study, we report the biosynthesis of NGPs using Streptomyces djakartensis isolate B-5. Materials and Methods: NGPs were biosynthesized by reducing aqueous ...
متن کاملSurvival Rate, Insecticidal and Fungistatic Activity of Antagonistic Actinomycete Streptomyces Griseoviridis and Entomopathogenic Fungus Beauveria Bassiana in Separate and Combined Introductions to the Soil
Highly active antagonistic actinomycete Streptomyces griseoviridis and entomopathogenic fungus Beauveria bassiana were applied to the soil separately and together (in association) in the laboratory experiments. We assessed survival rate, insecticidal and fungistatic activity of these strains. We also tested the influence of synthetic insecticide Regent 25® (fipronil 25g/l) on investigated param...
متن کاملIdentification, Cloning and Structural Analysis of Major Genes from Portulaca oleracea L. Hairy Roots that Involved in the Biosynthesis of Dopamine
Dopamine is one of the important medications of Portulaca oleracea L. To optimize the production of dopamine, one of the methods is the identification and engineering of metabolite pathways. To investigate the tyrosine decarboxylase (TDC) and tyrosinase, which seem to be the most important genes in dopamine synthesis pathway, hairy roots were produced from Portulaca oleracea using Agrobacterium...
متن کامل